

Abstracts

The Inductance Matrix of a Multiconductor Transmission Line in Multiple Magnetic Media (Short Papers)

J.R. Mautz, R.F. Harrington and C.G. Hsu. "The Inductance Matrix of a Multiconductor Transmission Line in Multiple Magnetic Media (Short Papers)." 1988 Transactions on Microwave Theory and Techniques 36.8 (Aug. 1988 [T-MTT]): 1293-1295.

Consider a multiconductor transmission line consisting of $N_{\text{sub}} c$ conducting cylinders in inhomogeneous media consisting of $N_{\text{sub}} d$ homogeneous regions with permeabilities $\mu_{\text{sub}} i$, and permittivities $\epsilon_{\text{sub}} i$. The inductance matrix $[L]$ for the line is obtained by solving the magnetostatic problem of $N_{\text{sub}} c$ conductors in $N_{\text{sub}} d$ regions with permeabilities $\mu_{\text{sub}} i$. The capacitance matrix $[C]$ for the line is obtained by solving the electrostatic problem of $N_{\text{sub}} c$ conductors in $N_{\text{sub}} d$ regions with permittivities $\epsilon_{\text{sub}} i$. It is shown that $[L] = \mu_{\text{sub}} 0 / \epsilon_{\text{sub}} 0 [C']^{-1}$, where $[C']$ is the capacitance matrix of an auxiliary electrostatic problem of $N_{\text{sub}} c$ conductors in $N_{\text{sub}} d$ regions with relative permittivities set equal to the reciprocals of the relative permeabilities of the magnetostatic problem, i.e., $\epsilon_{\text{sub}} i / \mu_{\text{sub}} 0 = \mu_{\text{sub}} 0 / \mu_{\text{sub}} i$.

[Return to main document.](#)